3.1

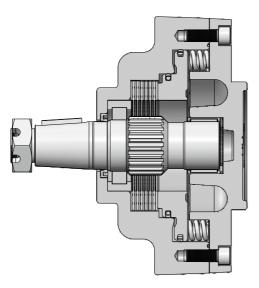
HBK seriesHydraulic brake

The HBK series brakes are normally-off oil wet static hydraulic brakes, which utilize spring action to produce the braking force, while oil pressure is used to release the brake.

Hengli

Contents

Overview ·····	02
Advantages ·····	02
Standard structure ·····	02
Specification	03
Ordering information ·····	04
Installation size	05
Shaft end dimensions	05
Allowable shaft load/bearing curve	06
Hydraulic diagram ······	06


Advantages

The HBK series brakes are normally-off oil wet static hydraulic brakes, which utilize spring action to produce the braking force, while oil pressure is used to release the brake.

Overview

- · A combination of roller bearings and needle roller bearings ensure a high-strength load capacity.
- · It features unique friction-resistant materials and a high-strength spring design, allowing for a long service life and high braking reliability.
- . All core components are immersed in oil in order to further extend service life and reduce noise.

Standard structure

P-0012

Specification

Туре	HBK1150	HBK1500
Min. static torque (N·m)	1150	1500
Brake release pressure (bar)	2	8
Max. release pressure (bar)	250	
Min. amount of brake release oil (cm³)	11.5	
Max. speed (rpm)	250	
Volume of lubricating oil in brake cavity (cm³)	180	
Max. working oil temperature (°C)	82	
Weight (kg)	16.1 17.2	

T - 0039

Ordering information

HBK	1150	B01	T7	N	N	Α
1)	2	3	4	(5)	6	7

Hydraulic Brake Series

1	Hydraulic Brake	HBK

Static Torque

2	Static torque(N·m)	1150	1500	

Mount, Port

_		
(3	4ר13.1 Round mount, port 7/16-20UNF, rear pilot Ø101.6×12.8	B01

Output Shaft

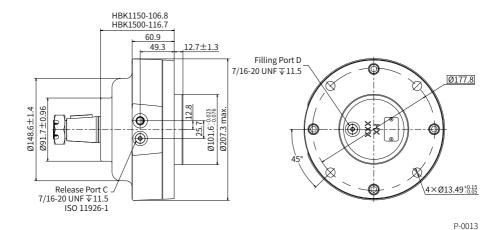
4	Ø38.1 Tapered, parallel key 7.96×7×31.75	T7	
---	--	----	--

Rotation Direction

	None	l N
- `	J 1.1011.c	

Paint Option

	No Paint	N
6	Black	В
	Hengli blue	С

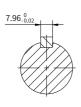

Special Features

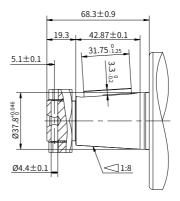
|--|

T - 0040

Note: When using the order information, the user can select the brake series, static torque, installation flange, port, shaft and other information. If the selected specification is not in the table or has special requirements, please contact us.

Installation size

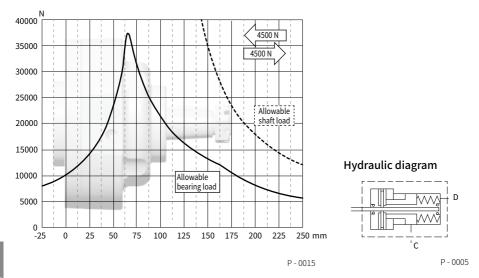



B01 7/16-20UNF

Shaft end dimensions

T7

Ø38.1mm Tapered Parallel key $7.96 \times 7 \times 31.75$ Tightening torque 410-540N⋅m Max. Torque: 1200N·m



P-0014

As shown in the figure, when the axial load is 0, the radial allowable load of the output shaft is related to the distance from the flange mounting surface to the load action point.

The solid line shows the allowable radial load of the bearing. It is based on L_{10} bearing life 2000 hrs at 100 RPM with rated output torque.

The dash line shows max radial shaft load. Any shaft load exceeding the values quoted in the curve will involve a risk of failure.

160